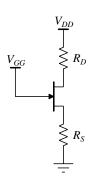


DISPOSITIVOS SEMICONDUCTORES


http://materias.fi.uba.ar/6625/

Evaluación Final 1 de agosto de 2017

Nombre y apellido:	Padrón:
v -	Año y Cuatrimestro de cursada:
e-mail:	Año y Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 5 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta es respondida incorrectamente resta la mitad del puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- [1 pt.] 1) Un bloque de silicio de largo $L=10\,\mu\mathrm{m}$, ancho $W=2\,\mu\mathrm{m}$, profundidad $h=3\,\mu\mathrm{m}$ se encuentra uniformemente dopado con $N_D=10^{16}\,\mathrm{cm}^{-3}$, resultando en una movilidad $\mu_n=1200\,\mathrm{cm}^2/\mathrm{Vs}$ y $\mu_p=450\,\mathrm{cm}^2/\mathrm{Vs}$. ¿Cuál es la corriente que circula a lo largo de la muestra si se aplica una tensión de 5 V entre sus extremos (en módulo)?
- [½ pt.] 2) A la muestra de la pregunta anterior, se le crece en su superficie superior (sobre el plano $W \times L$) un óxido y sobre el óxido se deposita polisilicio fuertemente dopado con átomos aceptores, formando una estructura MOS. Sin aplicar tensión en el gate, nuevamente se aplica una tensión de 5 V entre los extremos de la muestra, de igual manera que en el ejercicio anterior. ¿Cómo cambia la corriente que circula a través de la muestra, respecto del ejercicio anterior? (Nota: No se trata de un transistor MOS ya que no se realizaron difusiones de Drain y Source)
- [1 pt.] 3) Se tiene un circuito serie a $T=298\mathrm{K}$ compuesto por una fuente CC (12 V), una resistencia de $10\,\mathrm{k}\Omega$ y un diodo basado en silicio polarizado en directa ($I_o=1\,\mu\mathrm{A};\ \tau_T=10\,\mathrm{ns};\ N_A=N_D=2\times10^{16}\mathrm{cm}^{-3};\ A=10^{-9}\,\mathrm{m}^2$). Calcule el modelo de pequeña señal.
- $[\frac{1}{2}$ pt.] 4) MOSFET canal P: ¿cuál de las siguientes acciones produce una disminución en el **módulo** de la tensión umbral V_T respecto de temperatura ambiente?
- [1 pt.] 5) Se tiene el circuito de la figura que posee un transistor JFET basado en silicio con las siguientes características $V_p=-6\,\mathrm{V};\;I_{Dss}=10\,\mathrm{mA};\;V_{DD}=3,3\,\mathrm{V};\;V_{GG}=-3,3\,\mathrm{V};\;R_S=120\,\Omega;\;R_D=60\,\Omega;\;\lambda=0.$ Calcular la corriente de Drian.

- [½ pt.] 6) Para un proceso de fabricación CMOS de sustrato tipo P, indicar en qué orden se deben aplicar las máscaras para la fabricación de un inversor complementario.
- [½ pt.] 7) Para un inversor CMOS en donde la entrada pasa de un valor bajo ('0') a alto ('1'), indique qué es cierto respecto de la transición de la señal a la salida.
- [1 pt.] 8) Se tiene un amplificador emisor común sin carga implementado con un transistor NPN con parámetros $\beta=300~{\rm y}~V_A\to\infty$. El circuito está alimentado con $V_{CC}=5~{\rm V}$, y se determinó que $A_{vo}=-130~{\rm y}$ $R_{OUT}=130~{\rm \Omega}$. ¿Cuál de las siguientes aseveraciones no se corresponde con el amplificador descripto? (Considerar $V_{th}=26~{\rm mV}$)
- [½ pt.] 9) Se diseñó un amplificador emisor común que funciona correctamente y se conocen todos sus parámetros tanto de polarización como de amplificación (A_{vo} , R_{IN} y R_{OUT}). Por problemas de conexión, se rompe el transistor y debe ser reemplazado por otro con un β mayor, sin cambiar ningún otro elemento del circuito. ¿Cuál de las siguientes es una posible consecuencia de la nueva implementación del amplificador?

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 1 de agosto de 2017

- [½ pt.] 10) Se diseñó un amplificador source común con un transistor de canal N, y se calcularon todos sus parámetros tanto de polarización como de amplificación (A_{vo} , R_{IN} y R_{OUT}) sin considerar el efecto de modulación del largo del canal. ¿Qué espera que cambie en el comportamiento si no fuese despreciable este efecto?
- [1 pt.] 11) Se tiene un regulador de tensión 7805 alimentado con 14 V a la entrada. El dispositivo trabaja en un ambiente de temperatura controlada menor a 50°C y el mismo tiene adosado un disipador con una resistencia térmica de valor $\theta_{dis} = 8$ °C/W. En la salida se conecta una carga resistiva. ¿Cuál es el mínimo valor de la resistencia de carga para que el regulador trabaje por debajo de la máxima temperatura recomendada?

package thermal data

PACKAGE	BOARD	θЈС	ΦJA
TO-220 (KC/KCS)	High K, JESD 51-5	3°C/W	19°C/W

recommended operating conditions

			MIN	MAX	UNIT
٧ı	Input voltage µA	A7805C	7	25	
IO Output current			1.5	Α	
TJ	Operating virtual junction temperature μΑ	A7800C series	0	125	ů